Discrete Mathematics -Propositional Logic

Propositional Logic

- Greek philosopher, Aristotle, was the pioneer of logical reasoning.
- Logical reasoning provides the theoretical base for many areas of mathematics and consequently computer science.
- It has many practical applications in computer science like design of computing machines, artificial intelligence, definition of data structures for programming languages etc.
- Propositional Logic is concerned with statements to which the truth values, "true" and "false", can be assigned.

Prepositional Logic – Definition

- A proposition is a collection of declarative statements that has either a truth value "true" or a truth value "false".
- A proposition consists of propositional variables and connectives. We denote the propositional variables by capital letters (A, B, etc). The connectives connect the propositional variables.
- A proposition is the basic building block of logic. It is defined as a declarative sentence that is either True or False, but not both
- The Truth Value of a proposition is True(denoted as T) if it is a true statement, and False(denoted as F) if it is a false statement.

• examples

- "Man is Mortal",
- "12 + 9 = 3 2",

it returns truth value "TRUE" it returns truth value "FALSE"

- The following is not a Proposition -
- "A is less than 2".
- What time is it?
- Go out and play.

```
Connectives
In propositional logic generally we use five connectives which are –
•OR (\lor)
•AND (\land)
•Negation/ NOT (\neg)
•Implication / if-then (\rightarrow)
•If and only if (\Leftrightarrow).
```

OR (v) (disjunction)

OR (\lor **)** – The OR operation of two propositions A and B (written as $A \lor B$) is true if at least any of the propositional variable A or B is true.

Α	в	AVB
True	True	True
True	False	True
False	True	True
False	False	False

- Two propositions ----- P, Q
- P:"today is Friday"
- Q:"It is raining today"
- Disjunction (PVQ) : today is Friday or it is raining today

AND (/\) ,Conjunction

AND (\land) – The AND operation of two propositions A and B (written as $A \land B$) is true if both the propositional variable A and B is true.

Α	в	$A \wedge B$
True	True	True
True	False	False
False	True	False
False	False	False

- Two propositions ----- P , Q
- P:"today is Friday"
- Q:"It is raining today"
- R: 2+3=5
- Conjunction (P/\Q) : today is Friday and it is raining today
- P/\R :today is Friday and 2+3=5

Negation (~)

Negation (\neg **)** – The negation of a proposition A (written as $\neg A$) is false when A is true and is true when A is false.

Α	٦A
True	False
False	True

- P: "It is raining today"
- ~p: "It is not the case that is raining today" or simply "It is not raining today".

Implication/if -- then

- For any two proposition p ,q the statement " if p then q" is called implication.
- Equivalent

Implication / if-then (\rightarrow) – An implication $A \rightarrow B$ is the proposition "if A, then B". It is false if

A is true and B is false. The rest cases are true.

А	В	$\textbf{A} \rightarrow \textbf{B}$
True	True	True
True	False	False
False	True	True
False	False	True

Biconditional statements

If and only if (\Leftrightarrow) - $A \Leftrightarrow B$ is bi-conditional logical connective which is true when p and (

are same, i.e. both are false or both are true.

А	в	A ⇔ B
True	True	True
True	False	False
False	True	False
False	False	True

- <u>https://www.geeksforgeeks.org/proposition-logic/</u>
- <u>https://www.tutorialspoint.com/discrete_mathematics/discrete_mathematics_propositional_logic.htm#:~:text=A%20proposition%20is%2</u>
 <u>0a%20collection,connectives%20connect%20the%20propositional%2</u>
 <u>Ovariables</u>.